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Abstract—Reaction of o-acyl-N-pivaloylanilines with lithium trimethylsilyldiazomethane efficiently gave the corresponding o-alkyn-
yl-N-pivaloylanilines via alkylidenecarbene intermediates.
� 2005 Elsevier Ltd. All rights reserved.
o-Alkynylanilines serve as an important precursor for
the construction of heterocyclic structures, for example,
indole,1,2 quinoline3 and cinnoline skeletons.4 Although
there are a few synthetic methods of o-alkynylanilines,5,6

the practical method would be limited to Sonogashira
coupling reaction between o-iodoanilines and terminal
alkynes.5 Therefore, development of additional syn-
thetic approaches to o-alkynylanilines would be still re-
quired in the field of heterocyclic chemistry.

Recently, we have revealed that the lithium salt of tri-
methylsilyldiazomethane (TMSC(Li)N2), a quite useful
reagent for generating alkylidenecarbenes from carbonyl
compounds,7,8 smoothly reacts with o-acyl-N-tosylanil-
ines to selectively give 3-substituted N-tosylindoles (the
intramolecular N–Li insertion products) via alkylidene-
carbene intermediates (Scheme 1).9 In some cases, small
amounts of o-alkynyl-N-tosylanilins (the rearrangement
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Scheme 1. Reaction of o-alkynyl-N-tosylanilines with TMSC(Li)N2.
products) were formed as by-products. On the other
hand, interestingly, under similar conditions, when
o-acetylacetanilide was used as a substrate, the major
product was the rearrangement product, o-(1-propy-
nyl)acetanilide (46%), though the desired indole (21%)
was also obtained.9 These results indicate that the reac-
tion pathway was significantly affected by a substituent
on an amino group. Therefore, we reinvestigated the
reaction of N-acyl-o-acylanilines with TMSC(Li)N2 in
order to yield N-acyl-o-alkynylanilines selectively. This
letter describes our results.

First, screening of N-substituents was carried out as
shown in Table 1.10,11 As standard reaction conditions,
we employed TMSCHN2 (1.2 equiv) and n-BuLi
(2.2 equiv), in which the latter was used as a base for
the preparation of TMSC(Li)N2 and for deprotonation
of the N–H moiety of a substrate. As expected, reaction
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Table 2. Reaction of o-acyl-N-pivaloylanilines 1 with TMSC(Li)N2
a
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Entry Substrate R1 R2 R3 Yield
(%)

1 1e n-Bu H H 82 (2e)
2 1f i-Pr H H 76 (2f)
3 1g H H H 50 (2g)
4 1h Ph H H 50 (2h)
5 1i 2-Pyridyl H H 58 (2i)b

6 1j 2-Furyl H H 84 (2j)
7 1k Me –OCH2O– 63 (2k)b

8 1l Me I H 56 (2d)c

9 1l Me I H 51 (2l)d

10 1m H Me H 64 (2m)
11 1n i-Pr Me H 82 (2n)
12 1o i-Pr –CH@CH–CH@CH– 63 (2o)

a In all cases, 3-substituted indole was not obtained.
b Substrates 1i and 1k were recovered in 6% and 7% yields,
respectively.

c The desired iodo derivative 2l was not obtained.
d n-BuLi (1.2 equiv) was used.
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Entry R Solvent Yield (%)b

1 Bz (a) THF 62 (2a)+4 (3a)+3c

2 p-MeOPhCO (b) THF 56 (2b)
3c o-MePhCO (c) THF 38 (2c)+9c

4 Piv (d) THF 74 (2d)+8 (3d)
5a Piv (d) THF 69 (2d)+10 (3d)
6 Piv (d) Et2O 61 (2d)+16 (3d)

a n-BuLi (1.2 equiv) was used.
b Isolated yield.
c Yield of 3-methylindole.
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of TMSC(Li)N2 with 1a–d bearing a benzoyl, p-meth-
oxybenzoyl, o-methylbezoyl or pivaroyl group as N-sub-
stituents in THF smoothly proceeded and the desired
o-(1-propynyl)anilides 2a–d were preferentially obtained
in all cases (entries 1–4). Among them, 1d bearing a
bulky pivaroyl group gave the best result (entry 4).
Interestingly, in this reaction, the use of a reduced
amount of n-BuLi also afforded 2d in good yield (entry
5). This result indicates that there might be equilibrium
between TMSC(Li)N2 and the N–Li form of the amide.
Very recently, it has been reported that the use of Et2O,
having lower ET-value

12 than that of THF, as solvent
increases the ratio of the alkyne to the indole in the reac-
tion of TMSC(Li)N2 with o-aminobenzophenone.13

However, reaction with 1d in Et2O led to a less effective
result (entry 6).

Under the most efficient reaction conditions as shown in
entry 4 of Table 1, generality of the reaction was inves-
tigated (Table 2).11 Reaction of TMSC(Li)N2 with 1e
and 1f bearing alkanoyl groups, such as pentanoyl and
isobutyryl groups, as an acyl moiety, successfully affor-
ded the desired o-alkynyl-N-pivaloylanilines 2e and 2f
as the sole isolable product in 82% and 76% yields,
respectively (entries 1 and 2). Similarly, the formyl deriv-
ative 1g gave 2g in 50% yield (entry 3). Substrates 1h–j
bearing aroyl groups also underwent the reaction with
TMSC(Li)N2 giving the corresponding 2h–j (entries 4–
6). Especially, 2-furyl derivative 1j gave the high yield
(84%). Although reaction of the p-iodoanilide 1l also
proceeded, the product was the deiodinated alkynylani-
lide 2d, not the p-iodo derivative 2l, resulting from
iodine–lithium exchange reaction (entry 8). However, the
use of the reduced amount of n-BuLi described above
led to a significant improvement of the reaction and
the desired 2l was obtained in 51% yield without forma-
tion of 2d (entry 9). This reaction will be valuable since
the synthesis of (o-alkynyl)iodoanilines by Sonogashira
reaction of diiodoanilines with terminal alkynes is usu-
ally difficult. Other substrates 1m–o also gave the corre-
sponding alkynes 2m–o in 63–82% yields (entries 10–12).

In conclusion, we have found that o-acyl-N-pivaloylan-
ilines reacted with TMSC(Li)N2 to selectively give
o-alkynyl-N-pivaloylanilines. This method would pro-
vide a new and efficient synthetic access to o-alkynyl-
anilines, which are useful precursors for construction
of heterocyclic skeletons. Moreover, this result and our
previous report9 are noteworthy in demonstrating that
the difference between tosyl and pivaloyl groups as
N-substituents of o-acylanilines in reaction with
TMSC(Li)N2 would bring about divergent reaction of
their alkylidenecarbene intermediates, namely, N–Li
insertion reaction and rearrangement reaction.
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